Healthcare: stroke research
Sena ES, van der Worp HB, Bath PMW, Howells DW, Macleod MR. Publication bias in reports of animal stroke studies leads to major overstatement of efficacy. PLoS Biol 2010; 8(3): e1000344.
Journal link.

Abstract
The consolidation of scientific knowledge proceeds through the interpretation and then distillation of data presented in research reports, first in review articles and then in textbooks and undergraduate courses, until truths become accepted as such both amongst ‘‘experts’’ and in the public understanding. Where data are collected but remain unpublished, they cannot contribute to this distillation of knowledge. If these unpublished data differ substantially from published work, conclusions may not reflect adequately the underlying biological effects being described. The existence and any impact of such ‘‘publication bias’’ in the laboratory sciences have not been described. Using the CAMARADES (Collaborative Approach to Meta-analysis and Review of Animal Data in Experimental Studies) database we identified 16 systematic reviews of interventions tested in animal studies of acute ischaemic stroke involving 525 unique publications. Only ten publications (2%) reported no significant effects on infarct volume and only six (1.2%) did not report at least one significant finding. Egger regression and trim-and-fill analysis suggested that publication bias was highly prevalent (present in the literature for 16 and ten interventions, respectively) in animal studies modelling stroke. Trim-and-fill analysis suggested that publication bias might account for around one-third of the efficacy reported in systematic reviews, with reported efficacy falling from 31.3% to 23.8% after adjustment for publication bias. We estimate that a further 214 experiments (in addition to the 1,359 identified through rigorous systematic review; non publication rate 14%) have been conducted but not reported. It is probable that publication bias has an important impact in other animal disease models, and more broadly in the life sciences.